<u>ОБЩЕМОСКОВСКИЙ СЕМИНАР НАУЧНОГО</u> <u>СОВЕТА ПО ВМС РАН</u>

"Новейшие достижения в области науки о полимерах"

"Полимер-силикатные нанокомпозиты, полученные на новых каталитических системах"

<u>Е. М. Антипов,</u>

Е. А. Мушина, М. А. Гусева, В. А. Герасин, А. В. Иванюк

Институт нефтехимического синтеза им. А. В. Топчиева Российской академии наук, Ленинский пр. 29, Москва, 119991 Россия

Цель научного доклада: продемонстрировать и обсудить научные результаты экспериментального характера, полученные лишь в последние полтора года в лаборатории физико-химических исследований ИНХС РАН (неопубликованные данные).

План научного доклада включает следующие разделы:

- 1. краткое описание нового подхода по созданию полимерсиликатных нанокомпозитов, предложенного и успешно реализованного в нашей лаборатории;
- 2. демонстрация предварительных результатов по получению нанокомпозитов на основе органических полимеров (полиолефины, полидиены, и некоторые другие) и неорганических глин (натриевый монтмориллонит).
- 3. описание более сложных нанокомпозитных систем на основе полимерных смесей и статистических сополимеров, полученных полимеризацией *in situ* на новых катализаторах биядерных каталитических системах, нанесенных на поверхность неорганического носителя.

25 сентября 2001, Москва

(e-mail: antipov@ips.ac.ru)

SI-O-TI MgCI + R2AL NI-RnR $\mathbf{R}^{1} = i - C_4 \mathbf{H}_9$ or $\mathbf{H};$ Si-O-A(Ni-RnR' + CI-The Assumed Scheme of Interaction of the Catalyst **Components with the Silica Gel Surface** $R = C_5 H_8$ E

The Scheme of the Structure of Layered Silicate - Sodium-Monmorillonite

Interlayer distances (nm) measured on basal reflection (hkl) on the Xray patterns (reflection mode) of pure clay and clay modified by organic molecules.

Sample hkl	Pure Clay	Clay 1	Clay 2	Clay 3
001	1,25/1,78	3,11/3,68	1,75/1,75	1,89/3,80
002	0,63/0,89	2,07/2,21	0,88/0,88	0,95/2,10
003	0,41/0,60	1,26/1,36	0,58/0,58	0,59/1,00
004	0,31/0,45	0,91/1,02	0,35/0,35	0,36/0,37
005	/0,36	0,51/0,56		/0,27
006	/0,30	0,36/0,49		/0,22
007		0,32/0,37		
008		0,30/0,31		

numerator – original clay

denominator – clay saturated with glycerin

WAXS-Data for Initial and Modified Clay Powders at 20 $^{\circ}\mathrm{C}$

X-Ray Patterns of PE / 14% Clay Nanocomposite Treated by the Hot Solvent

X-ray Pattern of PE/14% clay Nanocomposite at 20[°]C

Mechanical Properties of Neat PE and PE-clay Nanocomposites

SAMPLE	COMPOSITION,wt%		STRESS, MPa		STRAIN, %		MODULUS, MPa	
	Clay	Silicagel	20°C	70°C	20°C	70°C	20°C	70°C
TIPS 172			28.3		624		396	
TIPS 015	-	3.4	21.3		274		333	
TIPS 013	2.3	-	21.8		261		422	
TIPS 019	6.9	-	30.4		285		369	
TIPS 016	9.8	-	22.2		224		447	
TIPS 009	13.0	-	20.3	16.6	259	469	505	156
TIPS 010	14.0	-	19.7	18.9	268	483	487	170

X-Ray Patterns of PE / 14% Clay Nanocomposite under Elastic Loading

direct position

side position X-Ray Patterns of PE / 14% Clay Nanocomposite Drawn at 20 °C up to Break

"**a**" – point

"**c**" – point, **direct** position

"c" – point, direct "c" - point, side position

X-Ray Patterns of PE / 14% Clay Nanocomposite Uniaxially Drawn at 70 °C up to 500 %

direct position

side position

Analysis of the X-ray data

Temperature evolution of the angular position Temperature evolution of the intensity of the main reflections for the of the main reflections for the composition Composition containing 30% of PE containing 30% of PE deformed to 2500% deformed to 2500% 24 2Θ 200 200 PE PE -Orthorhombic 110 Orthorhombic 22 110 -100 XXXXXXXXXXXX 20 Hexagonal 100 18 Phase 16 transition Hexagonal PP 14 PP 50 100 150 200 0 T, ⁰C 100 50 150 200 T, [°]C

X-Ray Patterns for 1,4-trans-Polybutadiene / Clay Nanocomposite

выводы

Основные преимущества предлагаемого подхода:

<u>I. Каталитический эффект</u> – иммобилизация олигодиенильных комплексов переходных металлов на высокоразвитую поверхность натриевого монтмориллонита как твердого носителя приводит к:

• существенному (пятикратному и более) увеличению активности катализатора по сравнению с традиционными системами для тех же самых мономеров;

• универсальности действия подобных каталитических систем для различных классов мономеров – олефинов, диенов и т.д.;

• возможности комбинирования в едином полимеризационном процессе нескольких каталитических функций;

 возможности синтеза не только гомополимеров, но и более сложных сополимерных макромолекул, а также высокодиспергированных полимерных смесей посредством полимеризации in situ на единой каталитической системе;

 высокая активность (низкий расход) новых катализаторов позволяет создание энергосберегающих технологий синтеза с пониженным выбросом тяжелых металлов в окружающую среду.

П. «Нанокомпозитный» эффект – полимеризация ряда мономеров *in situ* на нанесенных биядерных каталитических системах позволяет:

 осуществить прочное связывание частиц минеральной глины и инертной (неполярной) полимерной цепи посредством проникновения макромолекулы в межслоевые пространства неорганического силиката;

 повысить некоторые механические характеристики нанокомпозитных материалов по сравнению с «чистыми» полимерами;

• наблюдать новые формы упорядочения макромолекул (мезофазные структуры) с 1D- и 2D-размерностями.