I. Самоорганизация в растворах 
хиральных молекул.

1. Пептидные поликеты.
2. Рибосомы.
3. Кинетики.
4. Амилодные рибосомы.
5. Закрученные агрегаты повсюду.

II. Структуры в неорганизованных 
анти-области сополимерах.
Collaboration:

I. A. Nyrkova  |  Dept. of Applied Maths.
A. V. Subbotin  |  U. of Leeds
A. E. Likhtman

A. Aggeli  |  SOMS Centre
N. Boden  |  School of Chemistry
          |  U. of Leeds
1. Самоорганизация в системах хиральных молекул.

1. Пептидные ленты

Семейство пептидных олигомеров (n = 9-27), самособирающихся в очень длинные (L > 1мм) "цепи", уже при концентрациях < 100мм (Ф < 10^{-6})

[SOMS centre, Univ. of Leeds, UK,
A. Aggelis, N. Boden et al: эксперименты 1994 ... годов]

Эти цепи имеют структуру классической β-плоскости т.е. стабилизированы множественными водородными связями и притяжением между боковыми привесками.

Первичная структура олигопептидов выбирается с учётом растворителя в котором они должны образовывать цепи (вода, метанол, хлорэтанол, ...)
Кроме простых цепей наблюдаются более толстые цепи, амфи и др.
DN1 peptide \( (n=11) \)

1 peptide molecule

\( 1 \text{nm}=a_1 \)

\( \beta \)-sheet tape

Цепь выглядит как "лента."

Так что DN1 \( (n=11) \) образует длинные цепи-ленты в воде.
Образование одинарной β-плоскостной ленты

\[ \text{Etrans} \rightarrow \text{Etape} \]

Одиночная молекула в форме клубка

Вытянутая цепь, готовая присоединиться к ленте

\[ \text{Etrans} > 0 \Rightarrow \text{одиночная цепь в вытянутом состоянии — не стабильна} \]

Цепи, объединённые в ленту, стабильны

\[ \text{Etape} > \text{Etrans} \]

Образование одинарной ленты контролируется 2-мя энергетическими параметрами

Данные из экспериментов:
- "far UV-CD spectroscopy" даёт \( f_\beta(c) \), концентрационную зависимость доли молекул в лентах
- Микрофотографии (TEM, AFM) дают оценки для длины лент и их геометрических параметров
Подгонка модели одиночной ленты к данным CD спектроскопии приводит к значению параметра $E_{\text{trans}} \approx 4.6$. Это соответствует длине ленты $\langle m \rangle \approx 20$. Однако наблюдавшая длина $\langle m \rangle > 2000$ молекул в ленте.

Для получения в модели цепей с $\langle m \rangle > 10^3$ необходимо положить: $E_{\text{trans}} > 13 k_BT$, а это противоречит CD данным!

Вывод: наблюдаемые цепи имеют структуру более сложную, чем классическая β-плоскость.
Way out:
double tapes (ribbons)

face-to-face attraction between two tapes;
one face of the tape is less soluble than the other.
В антипараллельной β-плоскости (одиночной ленте) стороны неэквивалентны: одна более гидрофобная, чем другая.

Например, в пептиде βN1 одна из сторон ленты встает в боковых привесках, содержащих сильно гидрофобные группы (2 фенилаланина и 1 триптороза): 

\[ R = -\text{CH}_2\text{-} \quad R = -\text{CH}_2\text{-} \]

Очевидна тенденция к спариванию в двойные ленты, через гидрофобные стороны.

Двойная лента имеет удвоенную энергию разрыва => гораздо более длинные цепи. Однако краевой участок \( f_\beta(c) \) контролируется короткими одиночными лентами.

Предположение о двойной характере лент, наблюдаемых в рамках DNA при \( c=100-500\mu M \) подтверждается значением наблюдаемой толщины (AFM) и отношением масса/длина (нейтронное рассеяние).
$\varepsilon_{tr} = 3, \ varepsilon_{\beta} + m \left( \frac{\nu_{\beta}}{\AA^3} \right) = 19.3, \ varepsilon_{dele} = 1.2$

$\varepsilon_{\text{trans}}$  \hspace{1cm} $\varepsilon_{\text{tape}}$  \hspace{1cm} $\varepsilon_{\text{ribbon}}$
Water solutions of DNT1 peptide

**Ribbons (double tapes)**

\[ [c] = 200 \text{ mM} \quad (\Phi = 2.5 \times 10^{-4}) \]

Width = 20-40 Å

Pers. length = 1 μm

**Filaments (4 ribbons)**

\[ [c] = 6 \text{ mM} \quad (\Phi = 7 \times 10^{-3}) \]

Width = 80 Å

Pers. length = 20-70 μm
2. Фибриллы

- $\varepsilon_{\text{fibril}}$
- $\varepsilon_{\text{tape}}$
- $\varepsilon_{\text{ribbon}}$
- $b_1$
- $b_2$
- $a$
Внешние стороны двойных лент также могут взаимно притягиваться, тем самым формируется стопка лент — "слоеный пирог".

Почему толщина стопок конечна?

Экспоненциальные нежирные, когда лента присоединяется к стопке, чем когда объединяются 2 ленты.

→ Если капилляр смачивает двойные ленты, они должны образовать ∞ агрегаты и выпадать в осадок.

А на TEM и AFM фотографиях при c > 600 мкм ленту DNA в воде образует толстые, но конечные стопки (толщина — ок. 8 одиночных лент).

Более того, толщина стопок ("фibriлы") практически неразличима.

Почему?
Объяснение парадокса толщины фибрилл в хиральности исходного пептида

⇒ Ленты получаются закругленными
⇒ При образовании фибрилл ленты впруж-дены обкручиваются друг вокруг друга
⇒ Оси лент в фибрилле перекрученны и изогнуты

Чем толще фибрилла, тем сильнее изогнута лента ⇒ большее стоимость упругой энергии

Это и стабилизирует толщину фибрилл!

Толщина равновесных фибрилл определяется периодом исходных лент и силой их притяжения

$ h_0 $ $ E_{fib} $ 

**Теория:** ленты - упругие объекты (k bend « k twist), закрученные с периодом $ h_0 $ и взаимо-притягивающиеся (энергия $ E_{fib} $ на ед. площади)

**Фазовая диаграмма**
TEM image of a fibril; twist step $h$; $p = 4$ ribbons per fibril.
\[ \frac{k_{\text{bend}}}{k_{\text{twist}}} = 0.1 \]

\[ \tilde{\varepsilon}_{\text{fib}} = \frac{2\pi^2 b_2}{a^2} k_{\text{twist}} \]

- Infinite stacks
- Lone primary tapes (ribbons)
- Fibrils
- Number of tapes per fibril

\[ h_0/a \]

\[ 10^0 \quad 10^1 \quad 10^2 \quad 10^3 \]
Пептиды, синтезированные в Мысе:
[SOMS, Univ. of Leeds]

\[ \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \]

\[ h_0 / a \]

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

\( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)

\[ h \]

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
- \( h_0 / a \)
- \( a \)

- \( \varepsilon_{\text{fibril}} / \varepsilon_{\text{fibril}} \)
Family of s.a. structures in solution of twisted rods

rod-like monomer

disordered monomer

concentration
3. Kinetics

fibril formation is very slow

1) high energies involved (E tape \approx 25 \text{kJ/mol},
      scission energy

2) Inter-twisted tapes and ribbons

aged fibrils are extremely long
and extremely stable
4. Amyloid fibrils

Are proteins capable of forming β-sheet tape structures?

Yes, even "α-helical" proteins can aggregate and form amyloid fibrils

struct. model of an amyloid fibril formed by the SH3 domain
- Amyloid fibrils are similar to model fibril/fibre structures

- protein misfolding

- neurodegenerative diseases
  Alzheimer's, Parkinson's, prion...

- amyloidosis
Alzheimer’s Disease

A.E. Rohrer et al.
*J. Biological Chemistry*,
1996, v.271,
pp.20631-35.

D.A. Kirschner et al.
*Proc. Natl. Acad. Sci. USA*, 1986,
v.83, pp. 503-507

A.P. Shivji et al.,
*Fed. of European Biochem. Soc. Letters*,
1985, v. 371, pp. 25-28
amyloid fibrils in thin tissue sections (spleens and livers)

T. Shirahama & A.S. Cohen
The structure of amyloid fibrils from patients with familial amyloidotic polyneuropathy (FAP), which are derived from transthyretin (TTR) variants.

Transthyretin Val30Met amyloid fibrils.

FAP fibril

native tetramer.

5. Twisted aggregates everywhere

just a few examples
**Sickle-Cell Anemia**

mutation in hemoglobin protein  
extra lateral attraction  
fibers destroying erythrocyte

**FIGURE 9-24.** An electron micrograph of deoxyHbS fibers spilling out of a ruptured erythrocyte.

**FIGURE 9-25.** 220 Å in diameter fibers of deoxyHbS: (a) An electron micrograph of a negatively stained fiber.

(b) A model, viewed in cross-section, of the HbS fiber based on the crystal structure of HbS and three-dimensional reconstructions of electron micrographs of HbS fibers.

14 HbS chains intertwist to form the fiber

10% of American blacks
25% of African blacks are heterozygotes for HbS
Chromonics

The columns are twisted, if the molecules are chiral.
In lateral aggregation "twisted ropes" are formed, even in racemic mixtures!

Among chromonics: drugs, dyes, nucleic acids, antibiotics, carcinogens, anti-cancer agents

["Handbook of Liquid Crystals", vol. 2B, ch. XVIII]
Conclusions.

1. Rationally designed oligo-peptides:
   - A lot of self-assembling filament structures (twisted fibrils) predicted/observed.
   - Many tape/fibril parameters obtained
     (tape scission energy, persistence length, intrinsic twist ... )
2. Some insight into the nature of amyloidosis (amyloid fibrils, protein misfolding)

II. Структуры в нерегулярных
мультблок сополимерах.

А В А В А В А В

регулярный

нерегулярный

Мотивация:

(1) синтетические полимеры (поли) всегда нерегулярны (полидисперсность блоков)

(2) биополимеры (напр. белки) подобны нерегулярным сополимерам по химической структуре (protein-like copolymers как модели белков)
Correlated random copolymers

Flory distribution of block length \( (n) \),
\[
\delta = \frac{n_w}{n_m} - 1 = 1
\]

phase diagram for no. of blocks \( \rightarrow \infty \)

S.V. Panyukov, I.I. Potemkin, JETP, 1997, 85, 183
\( \Psi^4 \)-model

\[
\begin{align*}
\tau & \quad \text{LAM} \\
\gamma & \quad \text{HEX} \\
\gamma & \quad \text{BCC} \\
\gamma & \quad \text{DIS} \\
\end{align*}
\]

macroscopic phase separation
Primary / secondary structures:
\[ \psi^4, \phi^4 \text{- model} \]

\[ \text{lam} \downarrow \text{hex} \downarrow \text{bcc} \]
\[ \text{dis} \quad \varepsilon \]

\[ \text{super}^2 \text{structures} \]

[Semenev, 1999]

(1) wide regions of stability of super\(^2\) structures;

(2) \[ \Lambda \propto \varepsilon^{-1} \quad \Rightarrow \quad L \propto \varepsilon^{-1/2} \quad \Rightarrow \quad R_n \sim n^{1/2} \alpha \]
3: alternating ordered and disordered lamellar sheets

4: hex structure of disordered cylinders in bcc matrix

5: fcc structure of disordered spheres in bcc matrix
• What's wrong with \( \psi^4 \) theory?

\[ \psi^4 \text{ is not enough} \Rightarrow \psi^8 \text{ (equivalent)} \]

• Recent non-linear generalization of \( \psi^4 \)

\[ F = \frac{\text{const}}{V^2} \int d^3q_1 \, d^3q_2 \, \frac{14q_1^2 + 14q_2^2}{q_1^2 + q_2^2} , \]

Shakhnovich, Gutin, 1989

\[ F = \frac{\text{const}}{V^2} \int u(z, z') [\Phi(z, z') - 1] \, d^3z \, d^3z' , \]

\[ u(z, z') = 4\psi(z)\psi(z') , \]

\[ \nabla^2_{z, z'} \Phi + u \Phi = 0 , \quad \Phi \to 1 \text{ as } (z, z') \to \infty \]

A.M.S., 2001

• Nature of disorder-order transition in random block-copolymers ...

• It's not just super-structure formation, soft, weak, long wave-length

Shakhnovich, Gutin, 1989

Angerman, Ten Brinke, Erulkhimovich, 1996
PLAIN SPHERICAL MICELLE

longer (and more symmetric) blocks

shorter blocks
• nor is it MACROSCOPIC phase separation: dis / microdomain (bcc) str.
  Panyukov, Potemkin, 1997; Angehman, 1998
• more complicated picture (A.V.S., 2001)

DIS → gas of plain spherical MICELLES
  → FCC superlattice of plain micelles
  → "" of spherical MICRODOMAIN micelles
  → "" cylindrical ""
  → ...

---

\[ \tau \quad \eta \]

---

FCC lattice of microphase-separated micelles

---

FCC superlattice of plain micelles

---

BCC primary superstructure
5. Summary and discussion.

- A mixture of 2 polymers (A and B): possibly phase segregation
  2 phases
- AB connected (block-copolymer):
  microdomain structures
  (a variety of morphologies: 5 classical + bicontinuous...)
- Polydisperse blocks → phase separation between different morphologies
  or, in the case of multi-block copolymers — further structure development, secondary superstructures with alternating primary morphologies
- Observed? No! But...
- Proceeding along the same line of thinking...
  → Coexistence of different secondary structures?
  → Higher-order superstructures on the top of secondary structures?
    Yes! Why not...
  → Hierarchical micro-phase separation