Статические и динамические поверхностные силы в коллоидных и полимерных системах

Ольга И. Виноградова

Институт физической химии, Российская Академия Наук, Россия

Max-Planck-Institute for Polymer Research, Germany

http://www.mpip-mainz.mpg.de/~vinograd/

Измерения и интерпретация (нано)взаимодействий между поверхностями, в том числе

равновесные поверхностные силы,

гидродинамические взаимодействия,

пластическая и упругая деформация,

адгезия, граничная смазка и т.д.

<u>Часть 1</u>

Введение

допущения:

- 1. поверхности твёрдые и гладкие,
- 2. растворитель сохраняет объёмные свойства,
- 3. дисперсионная и электростатическая силы независимы и аддитивны,
- 4. граничными условиями являются постоянство заряда или потенциала,
- 5. электростатический потенциал рассчитывается с использованием нелинейного уравнения Пуассона-Больцмана для точечных ионов, дискретность затядов учитывается только через условие постоянства заряда,
- 6. контактным углом пренебрегают

Сложные поверхности

<u>Модифицированные</u> и"новые"поверхности:

самоорганизованные слои,

сетки и щётки полиэлектролитов,

латексные частицы.

Цель:

понять фундаментальные взаимодействия в сложных коллоидных и биологических системах

<u>Сильнодеформируемые тела, пузыри и капли</u>

Приложения:

динамика смачивания,

устойчивость эмульсий и пен,

микротензиометрия,

взаимодействия с микрокапсулами и везикулами.

Сложные молекулы и растворы

Внутри- и межмолекулярные взаимодействия:

Белки, ДНК, полиэлектролиты, полиамфолиты

Первоочередная цель:

создание установок, позволяюших проводить такие измерения в высокой точностью и чувствительностью

Сложные жидкости:

Вязкоупругие и пластические жидкости, смеси, жидко-подобные и стеклообразные слои и.т.д.

<u>Часть 2</u>

Экспериментальная техника

Коммерческие установки

Аппарат для измерения поверхностных сил (SFA)

Преимущества по сравнению с SFA:

Эксперимент легче и быстрее
Деформация мала

Прибор для измерения коллоидных взаимодействий (PIA).

 Положение образца регулируется калиброванным пьезотранслятором, что устраняет проблемы гистерезиса и нелинейного отклика
Амплитуда пьезотранслятора 15 µm вместо 4 µm в AFM.

- Шире диапазон исследуемых сил, благодаря использованию «a position sensitive device» вместо фотодиода

-Установка позволяет изучать единичные взаимодействия поверхностей.

Прибор для измерения молекулярных взаимодействий

Комбинация измерений сил с оптическим сигналом

Флюоресцентная спектроскопия?

АFM для исследования нанореологии

Коммерческий AFM

АFM для нанореологии

<u>Часть 3</u> Принципы анализа

O.I.Vinogradova and R.G.Horn, Langmuir, 2001, <u>17</u>, 1604, O.I.Vinogradova et al, Rev. Sci. Instrum., 2001, <u>72</u>, 2330

Движение "мягких" поверхностей.

<u>Часть 4</u>

Результаты.

1. АFM эксперимент

Пластическая деформация в AFM. Лёд.

$$\frac{2\pi R}{a} \cdot D \cdot \frac{dD}{dt} + (K + 6\pi RY) \cdot D - Kv_0 \cdot t - F = 0$$

а - параметр, определяющий скорость плавления и погружения, *D* - погружение,

Y - предел текучести

Force / nN

H.J.Butt et al, J. Chem. Phys., 2000, <u>113</u>, 1194

Смачиваемость микрочастиц. Линейное натяжение.

. _ .

Дальнодействующее притяжение между гидрофобными поверхностями

Полистирольные латексные частицы (self-assembled thiol layers, silanated silica, etc)

Силовые кривые, полученные для первого (1), второго (2), шестого (3), седьмого (4) взаимодействий. DLVO взаимодействие с постоянным потенциалом -70 vs -65 mV(5) and -60 vs -50 mV (6)

Притяжение
второго типа экспоненциальная
функция
Корелляционная
длина равна
Дебаевской.

G.E.Yakubov et al., J. Phys. Chem. B, 2000, <u>104</u>, 3407; <i>O.I.Vinogradova et al., J. Chem. Phys., 2001, <u>114</u>, 8124

Нанореология единичной молекулы

стадия

<u>Часть 4</u>

Результаты.

2. SFA эксперимент

Эволюция формы капли при быстром сближении

Изменение толщины вдоль плёнки вызывает изменение длины волны вдоль каждой полосы постоянного порядка *m*

J.N.Connor,PhD thesis, University of South Australia, 2001

Скольжение раствора неадсорбируемого полимера

Vinogradova and F.Feuillebois, J. C Interface Sci., 2000, <u>221</u>, 1

<u>Часть 4</u>

Экспериментальные результаты. 3. ???

Гидрофобное притяжение или гидрофобное проскальзывание?

$$b = \delta \left(\frac{\mu_b}{\mu_s} - 1 \right)$$

- δ is the thikness of layer with altered viscosity
- μ_b is the bulk viscosity
- μ_s is the surface viscosity

Кажущееся притяжение, ожидаемое при действии экспоненциальной силы притяжения

b=10 нм

 v_s is the slip velocity

b is the slip length

 v_b is the liquid velocity in the bulk

O.I.Vinogradova, Int. J. Mineral Proc., 1999, <u>56</u>, 31; Langmuir, 1995, <u>11</u>, 2213