Intelligent Micro- and Nanocapsules

Gleb Sukhorukov Max-Planck Institute of Colloids and Interfaces, Golm/Potsdam, Germany

Coating colloids and Hollow capsules Release properties Encapsulation of macromolecules Organic dye precipitation by pH-gradient Inorganic particles synthesis in capsules Poor-water soluble dye precipitation Capsule based combinatorial libraries Enzymatic reaction in capsules

Polyelectrolyte Layer-by-layer assembly 3. Polycation Adsorption \oplus \oplus \oplus $\oplus \oplus \oplus \oplus \oplus \oplus \oplus$ 4. Wash 1. Polyanion Adsorption 2. Wash Ð Ð Ð \oplus \oplus \oplus \oplus \oplus \oplus

Capsule preparation

Cores drug nar

Organic and inorganic colloidal particles, drug nanocrystals, biological cells

Hollow Polyelectrolyte Capsule

Removal of core

The core (template) is a dissolvable colloidal particle, a drug particle a dye particle or even a biological cell

Melamin resin cores
Inorganic cores, carbonates, oxides
Dye and drug particles
Droplets
Erythrocytes, others biological cells

Layer constituents

- Synthetic polyelectrolytes
- Biopolymers (proteins, polysacharides, nucleic acids)
- Lipids,
- Inorganic nanoparticles
- The wall can be tuned in thickness, composition and functionality by choosing various constituents and adjusting the layer number

Advantage of the technique

Templated on red blood cell

 The size and shape of the capsules is controlled by the SIZE and SHAPE of the TEMPLATE

Rather monodisperse capsule dispersions can be prepared

Various Polyelectrolytes: □ PDADMAC - PSS
■ BSA - PDADMAC, ○ PSS - PAH, △ DNA - PDADMAC

Layer Thickness - Monitoring of Multilayer Formation by Single Particle Light Scattering

Hollow Polyelectrolyte Capsules

Layer-by-Layer approach

Scanning electron microscopy

Atomic force microscopy

Templating on biological cells - MICROREPLICA

Echinocyte cells

Confocal Scans through an Echinocyte templated polyelectrolyte shell

Release Control by Multilayers

Permeability Coefficients: Ionic Strength

Permeability behavior of annealed shells

The Presence of the Lipid Bilayer Decreases the Permeability

Capsules with 8 Polyelectrolyte Layers

Capsules with a Phospholipid Bilayer

The fluorescent polar marker 6-carboxyfluorescein is excluded

Encapsulation via Permeability Regulation

pH >7.5, closed state

pH <6.5, open state

pH>7.5 Encapsulated

pH

Encapsulation of Enzymes

Encapsulation of Urease in Polyelectrolite Multilayer shells

In Water

Ethanol/Water 1:1

In Water.

5 μm

Calcium carbonate growth into polyelectrolyte capsules by urease catalyzed reaction

urease $CH_4N_2O + 2H_2O \rightarrow 2NH_4^+ + CO_3^{2-}$ $Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3$

A final stage of precipitation

Polymer Synthesis inside Capsules

Broken and Empty Capsules

•The capsules were filled with a fluorescent (rhodamin) copolymer

•The permeability difference between substrate and product is always employed

Swelling as a result of osmotic pressure increase.

Encapsulation of macromolecules.

1. Controlled precipitation of polymers on colloidal particles

Precipitating condition

Solvent or complex-ion

Encapsulation of macromolecules. 2. Inner shell decomposition

non-charged 5 µm

Reversible shrinkage - swelling of the loaded with polyelectrolyte (PSS) capsules induced by osmotic pressure

Organic dye precipitation by pH-gradient

pH- difference through capsule wall established by Donnan equilibrium

Organic dye precipitation by pH-gradient

Polyelectrolyte Shells as templates for controlled crystallization and precipitation of small organic molecules. Model of drug loading

Fluorescence Confocal Image (self-quenching)

Transmission Image

6-carboxy-fluorescein

Scanning electron microscopy image of carboxytetramethylrhodamine precipitates

Organic dye precipitation inside capsules caused by pH-gradient

solubility, nucleus sites, pH-difference

MIXTURI

6-CF

Inorganic particles synthesis inside capsules

Selective pH-induced formation of Iron oxide crystals into capsule filled with polycation

Hematite Fe₂O₃-particles

Optical microscopy

Magnetite particles synthesis in capsule interior

Selective polymer/light-induced Silver particles formation into PSS and dextran filled capsules

Light

lg

Optical microscopy image of dextran filled capsules in AgNO₃ solution

TEM image of dextran filled capsules in AgNO₃ solution

Precipitation poor-water soluble dyes in capsules caused by polarity gradient

LbL of Thermosensitive Polyelectrolytes

use of charged PNIPAM derivatives for the preparation of thermosensitive microcapsules

Influence of the Temperature on the Capsule

size measured by confocal microscopy (8 deposited layers)

Combinatorial library based on Doping of Capsules with Fluorescent nanoparticles (quantum dots) and their mixture

Combinatorial library based on particle signing

Reduction of Ag in film by laser beam on surface of colloidal particles Ag/PSS film was assembled on colloid particles

Enzymatic reactions inside capsule

Dextran sulfate/ protamine capsules filled with alginate

> Chymotrypsine embedding in capsules containing alginate gel

Enzymatic reactions inside capsule

Kinetic scheeme of chymotrypsime function

Enzymatic reactions inside capsule

Capsules with embedded chymotrypsine

Bi-enzyme system incorporated in the capsule

Peroxidase fluorescein abelled

G licose oxidase beta-D-Glucose + O_2 = D-glucono-1,5-lactone + H_2O_2

Donor + H_2O_2 = oxidized donor + 2 H_2O_2

Am p le x forg licos assay, co b rless Red

Exitation 563 nm em ission 587 nm

Glicose oxidase modam ine labelled

Biological Functions on Polyelectrolyte Capsules -Toward Artificial Cells?

Acknowledgments.

Prof.Dr.Helmuth Möhwald

Postdoctoral researchers: Dr.Karine Glinel, Dr.Olga Tiourina, Dr.Dinesh Shenoy, Dr. Claire Peyratout Dr.Radostina Georgieva

Technical staff: *Carola Gaudl, Anne Heilig, Heidi Zastrow*

Ph.D.Students: Alexei Antipov, Igor Radtchenko, Ana Cordeiro, Wenfei Dong Anja Günther, Collaborators: Prof.Edwin Donath Prof.Yuri Lvov, Prof.Olga Vinogradova Prof.Natalia I. Larionova, Dr.Andrei Rogach Dr.Alexander Petrov, Dr.Dmitry Shchukin, Yuri Fedutik Michelle Prevot Capsulution NanoScience AG

Financial support

Sofia Kovalevskaya Programm of Alexander von Humboldt Foundation,

BMBF- Investment for Future Programm, EU-project "Nanocapsules"

